A Spec for > -Protocols

Authors: Michele Orru, Stephan Krenn

Contributors:

Jan Bobolz Mary Maller Ivan Visconti
Yuwen Zhang

Version: v 0.2

Date: November 21, 2023

" ZKPROOF

CONTENTS V 4 z<rroor
Contents

1 Introduction 1
1.1 Notation o o e e e e 1
1.2 Terminology L e e 1
1.3 Guarantees e e e 2
1.4 Scope of thisdocument, 3
2 Generic X-Protocols 3
2.1 OVEIVIEW o ot it e e e e e e e e e e e e 4
2.2 An abstract class for generic ¥-protocols oL, 4
2.3 The Fiat-Shamir Transform 5
2.3.1 Syntaxo e e e 6
2.3.2 Hash Registry e 6
2.3.3 Computing the challenge and seeding the commitment 6
2.3.4 Non-interactive proofs oo .. 7
2.3.5 Batchable Proofs o L. 8
2.3.6 ShortProofs e 8
2.4 Inputvalidation e 9
2.5 Composition of X-Protocols o 9
2.5.1 AND Composition e 10
2.5.2 ORComposition e 11
3 X-protocols on elliptic curves 12
3.1 Ciphersuite Registry o 13
3.2 Basic X-Protocols in prime-order groups 14
3.3 Advanced: proving linear relations00 L. 16
3.4 Instantiations L. L e e 16
3.4.1 Schnorr signatures 000 n e 17
3.4.2 Discrete logarithm equality 17
3.4.3 Diffie-Hellman 17
3.4.4 Representationo 18
3.5 Batchverification 19
4 Encoding the statement 19
5 Additional proof types 20

| don't have enough forks | . ’; A e

for how mang people | invikd Moo sheuld Yy e A | {Hoeh g et e

over For Qinner 2. spean) sownd &P i \ \ ferk ;

. oy 7 | |

& ©) & @ | & @ |

gB , gi L 1] o

(L (L \ (L)

\

L - I | By

A Spec for X-Protocols v 0.2 i

1 INTRODUCTION V 4 z<rroor

1 Introduction

Zero-knowledge [GMR89] proofs of knowledge [BG93] allow a prover to convince a verifier
that he knows a secret piece of information, without revealing anything except what the
claim itself already reveals. Many practically relevant proof goals can be realized using
so-called X-protocols. Introduced by Schnorr [Sch91] over 30 years ago, they play an es-
sential component in the building of a number of cryptographic constructions, such as
anonymous credentials [CMZ14], password-authenticated key exchange [HR11], signa-
tures [Sch90], ring signatures [MP15], blind signatures [PS97], multi signatures [NRSW20],
threshold signatures [KG20] and more. This spec provides guidelines for correctly imple-
menting ¥-protocols.

1.1 Notation

For the purpose of this document, the following notation will be used:
A main security parameter
C challenge set. A challenge is a vector of 32 bytes (octets).
Y the statement, i.e., the public information in a zero-
knowledge proof
w the witness, i.e., the secret information in a zero-knowledge
proof
T the first message, called commitment
¢ the second message, called challenge
s the third message, called response
x =1 assignment of the value 1 to z
x +$S assignment of a uniformly random element in S to =
x < procedure(in) assign to x the output of the randomized procedure on input
m
R binary relation
ly| bit-length of a string
@ binary operator denoting the bitwise XOR of two strings of
equal length
Additional notation will be introduced when describing specific algebraic objects.

1.2 Terminology

Given sets) and W, a binary relation R C Y x WV associates elements from) with elements
from W. For (Y,w) € R, we refer to Y as a statement, and to w as a witness (for Y). The
statement is public information shared between prover and verifier. The witness is secret
information solely known by the prover. Note there may be multiple witnesses for a given
Y.

Example 1: Discrete logarithm equality

Let G be a cyclic group of prime order p, and let G and H be generators of G. Then
the following relation Rqq contains as statements all pairs of elements having the
same discrete logarithm with respect to G and H, with the corresponding witness

A Spec for X-Protocols v 0.2 1

1 INTRODUCTION V 4 z<rroor

being their discrete logarithm:

Raleq = {((Y1,Y2),w) € G* xF, : Vi =wG A Yo=wH}.

Example 2: Representation

Let G be a cyclic group of prime order p, and let G and H be generators of G. Then
the following relation R,¢, contains as statements all valid Perdersen commitments,
with the corresponding witnesses being their openings:

Rrep:{(Ya<'LU1,UJ2)) EGXFIZD : Y:w1G+w2H}.

Note that in this case, each statement has p valid witnesses.

In a zero-knowledge proof, the witness is secret information, while the statement is
public. A proof is a sequence of bytes! attesting that a witness is in some relation with
the statement.

Proofs described in this spec are zero-knowledge and sound. Zero knowledge means
that the protocol does not leak any information about the prover’s witness beyond what
the attacker may infer from the proven statement or from other sources [ZKP19, 1.6.4].
Soundness means that it is not possible to make the verifier accept for statements for
which no valid witness exists [ZKP19, 1.6.2].

In particular we will focus on non-malleable extractable proofs, that is, proofs where
the witness does not only exist but is also precisely known by the prover. These protocols
are also known as proofs of knowledge [GMRS85, FFS87, BG93] and are said to satisfy
knowledge soundness [DamO0O4]. Non-malleability means that, in addition, the proof is
secure against man-in-the middle attacks, and attackers cannot produce a new valid
proof by tampering another valid proof.

1.3 Guarantees

Michele’s note: Question for the community: Should we require implementations to
be constant-time? It is not immediate to build OR composition in constant-time. It
is possible to double the cost and run prover and simulator for each branch, but at
the end we still need the ternary operator to select the correct transcript. This is the
only place where we are incurring in non non-constant-time operations (assuming
the algebraic operations are already solved). All other algorithms are constant-time.

Michele’s note: Question for the community: Who is the recipient of this standard?
Are they meant to know already what extraction, or simulation means? Should we
employ terms like simulation-extractability or non-malleability (the latter being differ-
ent from the former and more imprecise, yet also more self-explainatory). Side-note:
OR-composition is not simulation-extractable.

'"Throughout this work, a byte is defined as a vector of 8 bits.

A Spec for ¥-Protocols v 0.2 2

2 GENERIC Z-PROTOCOLS ' ZKPROOF

Prover Verifier

statement (Y), statement (Y),
context (ctx), context (ctx),
witness (w)

.

Protocol flow

commitment (7') T
¢ challenge (c)
response (s) S

transcript: (7¢,s)

Figure 1: Overview of the steps composing a generic -protocol. Underlined, the secrets
in the protocol. In practice, the challenge is computed deterministically and the protocol
is non-interactive. See Section 2.3 for more information.

1.4 Scope of this document

This document provides guidelines for secure implementations of ¥-protocols and is ad-
dressed to applied cryptographers and cryptographic engineers that are looking to imple-
ment a generic X-protocol or provide an ad-hoc instantiation as part of a larger protocol.

We consider the problem of having a high-quality entropy source well-suited for crypto-
graphic purposes outside of the scope of this document. We will not talk about imple-
mentation of cryptographic primitives such as hash functions, or elliptic-curve algebra,
but we will provide references for where to find them. We won’t provide any guidance for
securely storing secrets or producing constant-time code.

2 Generic Y-Protocols

In the following, we describe a generic interface for X-protocols. Such protocols can be
used to prove that, for some binary relation R and a public value Y, a witness w such
that (Y,w) € R is known. Basic statements include proofs of knowledge of a secret key,
openings of commitments and, more generically, of representations. The type of these
elements depends on the specific relation being implemented.

A Spec for ¥-Protocols v 0.2 3

2 GENERIC £-PROTOCOLS V 4 z<rroor

An important property of X-protocols is that they are composable: it is possible to
prove conjunction and disjunctions of statements in zero-knowledge. Composition of X-
protocols is dealt in Section 2.5; for an in-depth discussion of the underlying theory we
refer to Cramer [Cra97].

2.1 Overview
Any >-protocol is structured as follows:

* the prover computes a fresh commitment, denoted 7. This element is sometimes
also called nonce.

¢ the verifier computes, using the so-called Fiat-Shamir transform (cf. Section 2.3), a
random challenge, denoted c.

* the prover computes a response, denoted s, that depends on the commitment and
the challenge.

The final proof is constituted of the three-elements above (7, ¢, s), and is also referred to
as the transcript.

2.2 An abstract class for generic > -protocols

We define a template class for X-protocols denoted SigmaProtocol. This is the basic in-
terface that will be implemented in the remainder of this document. The methods com-
posing SigmaProtocol should be considered private and should not be exposed externally.
The public API is described later in Section 2.3. Instances are created via the new func-
tion, which is a class method, while all other functions act on a particular instance. A
SigmaProtocol consists of the following methods:

* SigmaProtocol.new(ctx,Y), denoting the initialization function. This function takes
as input a label identifying local context information ctx (such as: session iden-
tifiers, to avoid replay attacks; protocol metadata, to avoid hijacking; optionally, a
timestamp and some pre-shared randomness, to guarantee freshness of the proof)
and a statement Y, the public information shared between prover and verifier. This
function should pre-compute parts of the statement, or initialize the state of the
hash function.

* (T, pstate) < SigmaProtocol.prover_commit(w), denoting the commitment phase, that
is, the computation of the first message sent by the prover in a -protocol. This
method outputs a new commitment together with its associated prover state, de-
pending on the witness known to the prover and the statement to be proven. This
step generally requires access to a high-quality entropy source. Leakage of even
just of a few bits of the nonce could allow for the complete recovery of the wit-
ness [HGSO1, Ble0O, ANT"20]. The value T is meant to be shared, while pstate
must be kept secret.

In particular, we assume that there exists a function Serialize(7T') that serializes the
commitment 7" and that its size is fixed and implicitly determined by the statement
Y.

A Spec for X-Protocols v 0.2 4

2 GENERIC £-PROTOCOLS V 4 z<rroor

* s < SigmaProtocol.prover_response(pstate, c), denoting the response phase, that is,
the computation of the second message sent by the prover, depending on the wit-
ness, the statement, the challenge received from the verifier, and the internal state
generated by prover_commit. The value s is meant to be shared.

*® yesno < SigmaProtocol.verifier(7),c,s), denoting the verifier algorithm. This method
checks that the protocol transcript is valid for the given statement. The verifier al-
gorithm outputs nothing if verification succeeds, or an error if verification fails.

® label « SigmaProtocol.label(), returning a string of 32 B uniquely identifying the
relation being proven. Implementing this function correctly is vital for security, and
it must include all data available in the statement, as well as the parameters and
the relation being proven. The label will be used for computing the challenge in the
Fiat-Shamir transform (see Section 2.3). Precise indications on how to implement
this function will be given in the following sections (see e.g. Sections 2.5 and 3.4).

If the label is not tied to the relation, then it may be possible to produce another proof
for a different relation without knowing its witness. Similarly, if the statement is not
tied to the label, then it may be possible to produce proofs for another statement
whose witness is related to the original proof.

The final two algorithms describe the zero-knowledge simulator. The simulator is primar-
ily an efficient algorithm for proving zero-knowledge in a theoretical construction [BCF19],
but it is also needed for verifying short proofs (cf. Section 2.3.6) and for or-composition
(cf. Section 2.5), where a witness is not known and thus has to be simulated. We have:

® s« SigmaProtocol.simulate_response(), denoting the first stage of the simulator. It is
an algorithm drawing a random response that follows the same output distribution
of the algorithm prover_response.

® T < SigmaProtocol.simulate_commitment(c,s), denoting the second stage of the sim-
ulator, returning a commitment that follows the same output distribution of the
algorithm prover_commit.

2.3 The Fiat-Shamir Transform

The interactive versions of the Y-protocols presented in this document are not fit for
practical applications, due to subtle yet impactful details in their security guarantees. In
practice, public-coin protocols such as Y.-protocols can be converted into non-interactive
ones through the Fiat and Shamir heuristic [FS87] and subsequent work, e.g., by Bern-
hard, Pereira and Warinschi [BPW12].

The underlying idea is to replace the verifier with a cryptographically secure hash
function, hashing the context from the protocol and the previous message sent by the
prover.

Warning 1: Interactive Y-protocols

Y -protocols illustrated in this spec must not be used interactively.

A Spec for X-Protocols v 0.2 5

2 GENERIC £-PROTOCOLS V 4 z<rroor

2.3.1 Syntax

When using a hash function we will employ comma-separated values to indicate values
that are concatenated. To mitigate attacks and allow for state cloning, we also separate
values with a vertical bar to indicate that they must appear in a subsequent block and
that the previous is padded with zeros. For instance, H(a, b| ¢) denotes the hash of a
concatenated to b, then padded with the null byte until reaching the closest multiple of
BLOCK_LEN, and finally concatenating the resulting bit string to c.

Michele’s note: Question for the community: how should padding be implemented?
10*1 used in sha3 would be straightforward but perhaps just filling with zeros is sim-
pler and sufficient for our use-case?

Constants. Different hash functions may rely on different constants. We define some
of the parameters associated to the hash function that will be used throughout this spec.

Const name Notes
DOMSEP Domain separator for this standard. Fixed to 'zkpstd/sigma/0.1'.
BLOCK_LEN Length of a hash block
DIGEST_LEN Digest length

Michele’s note: Question for the community: this spec assumes that the hash
function takes as input a bit-string and returns a bit-string. This is however not
the case for all hash functions that we would like to support. For instance, Posei-
don [GKK'19]'s core function is a map F; — IE‘f, with /¢ fixed.

2.3.2 Hash Registry

This is the set of all supported hash functions. They take an arbitrary length sequence
of bytes as input, and output 32 B of entropy.

Hash Source BLOCK_LEN DIGEST_LEN
blake2b [ANWW13] 128 64
sha3-256 [BDPA13] 136 32

Supported hash functions must all have BLOCK_LEN > 32. We define labels and constant
strings so that their length is always at most 32B. If DIGEST_LEN > 32, we implicitly
assume that the implementation considers only the least significant bytes and discards
the remainder of the hash output when exactly 32 B bytes are needed.

2.3.3 Computing the challenge and seeding the commitment

Relying on a hash function allows us to both compute the challenge and generate the com-
mitment securely. We define the following auxiliary variables that may be pre-computed
during the call of SigmaProtocol.new(ctx, Y). All variables will have fixed length DIGEST_LEN
so to avoid canonicalization attacks.

A Spec for X-Protocols v 0.2 6

2 GENERIC £-PROTOCOLS V 4 z<rroor

hd := H(DOMSEP)
ha := SigmaProtocol.label()
hetx = H(ctx)

Seeding the commitment. The method SigmaProtocol.prover_commit() is a randomized
function that generates a random element, unique per each execution. The commitment
should be seeded as follows:

Z = randombytes(32)
return H(hd, hetx, ha| z, w).

If the output length DIGEST_LEN of the hash function is not sufficient to provide enough
entropy for the commitment, the seed may be expanded with a PRNG to provide the
quantity of random bytes desired.

Michele’s note: Question for the community: This must be more formal. What are
we expecting the PRNG to be? It seems a waste not to use variable-length hash out-
put from from supported hash functions. Should we opt for replacing sha3 with
shake? How is the implementor supposed to know what is enough entropy? This
could be misleading: there must be enough bytes to fill the domain of the morphism
(which could be more than the security parameter!). Finally, the hash function used
here may be different from the hash function to compute the challenge (this might
make sense in the case of algebraic hashing). Should we support it?

Computing the challenge. The method SigmaProtocol.challenge(u,T) is implemented
as follows in order to produce a random challenge.

hm = H(u)
return H(hd, hetx, ha| hm | Serialize(T)).

If no message is being set, i.e. if ;4 = None, then the implementation may decide to skip
the computation of hm and consider it empty. This method is fixed for all implementations
of SigmaProtocol. Note that the state of the hash function is partially shared between
the commitment seed inputs and the challenge computation. Implementors may choose
to store the partial hash state before generating the commitment, and reuse it when
computing the challenge.

2.3.4 Non-interactive proofs

We define two public methods for generating proofs, meant to be exposed externally:
short_proof, and batchable_proof. Since the challenge is computed deterministically from
the commitment and the statement, it is not necessary to include the full transcript in a
proof, as it can be deduced in the verification phase.

Short proofs are the most efficient if the protocol contains at least an AND com-
position (see Section 2.5 for a proper definition), and the gain in size is measured as
|T| — DIGEST_LEN. (Note: the length of the commitment is the length of the statement.)

A Spec for X-Protocols v 0.2 7

2 GENERIC £-PROTOCOLS V 4 z<rroor

Batchable proofs are the canonical forms of proofs. Provers in the batchable form may
raise an exception if the statement is not valid. Proofs are seen as fixed-length bit strings,
whose exact length can be inferred from the statement during initialization of the X-
protocol.

Remark 1: Witness validation

In the following we assume correctness of the witness w for the given state-
ment Y. This can be ensured, e.g., by a higher-level application, or by running
SigmaProtocol.verifier(T ¢, s) before sending the resulting proof.

2.3.5 Batchable Proofs
Prover algorithm. The public function SigmaProtocol.batchable_proof(w, ;1) computes:

(T, pstate) < SigmaProtocol.prover_commit(w).

¢ + SigmaProtocol.challenge(u,T)

W D=

s < SigmaProtocol.prover_response(pstate,c).

4. Return Serialize(7') concatenated to Serialize(s)

The challenge c is not provided within a batchable proof since it can be re-computed
from the commitment.

Verifier algorithm. The verifier’s algorithm SigmaProtocol.batchable_verify(w,) works
as follows:

1. (T, s) := Deserialize(m)
2. ¢ < SigmaProtocol.challenge(u,T)

3. Return the result of SigmaProtocol.verifier(7,c,s).

Warning 2: Input validation

The case of batched verification must include an input validation sub-routine
that asserts the statement and commitments are in question. In the case of
elliptic curves described in Section 3.4, this boils down to point validation.
Failure to properly check that a commitment is in the group could lead to
subgroup attacks [vW96, LL97] or invalid curve attacks [BMMOO, BBPV12].

2.3.6 Short Proofs
Prover algorithm. A new proof SigmaProtocol.short_proof(w,u) is built as follows:

(T, pstate) < SigmaProtocol.prover_commit(w).
¢ < SigmaProtocol.challenge(u,T")

s < SigmaProtocol.prover_response(pstate,c).

W e

Return Serialize(c) concatenated to Serialize(s).

A Spec for ¥-Protocols v 0.2 8

2 GENERIC £-PROTOCOLS V 4 z<rroor

The commitment 7" is not provided within a short proof since it can be calculated
again.

Verifier algorithm. The verifier'’s algorithm SigmaProtocol.short_verify(m,) works as
follows:

1. (¢,s) :=Deserialize(mw)

2. T < SigmaProtocol.simulate_commitment(c,s).
3. ¢* < SigmaProtocol.challenge(u,T)
4

. Check whether ¢ = ¢*. Output true if this is the case, and false otherwise.

If input parsing fails, an exception should be raised. If verification fails, an exception
should be raised. Otherwise, the verifier outputs true. Optionally, the implementation
can choose to return the parsed statement.

Remark 2: Availability of the short form

While the short form as described here is applicable to all X-protocols currently
covered by this document, it cannot be used for protocols where 7" is not uniquely
determined by ¢ and s, as is the case, e.g., for ZKBoo [GMO16], one-out-of-many
proofs [GK15], or protocols, where a randomized signature is sent and proven cor-
rect subsequently, e.g., [PS16, CCsO08].

A trade-off is presented, e.g., by Bobolz et al. [BEHF21], requiring an additional
algorithm to shorten a full transcript to a compressed form which still allows for
unique reconstruction of the transcript.

2.4 Input validation

Michele’s note: TODO: validation of the statement, validation of the witness, valida-
tion of a short proof, and valdidation of batchable proof. can the challenge be zero;
can the commitment be the point at infinity

2.5 Composition of X-Protocols

Y-protocols can be composed to prove knowledge of multiple independent witnesses (AND
composition), and for proving knowledge for one out of a set of witnesses (OR composition).
An object SigmaProtocol can be seen as a recursive enumeration

enum SigmaProtocol {
AndComposition {left: SigmaProtocol, right: SigmaProtocoll,
OrComposition {left: SigmaProtocol, right: SigmaProtocol},
[...]

3

A Spec for X-Protocols v 0.2 9

2 GENERIC £-PROTOCOLS V 4 z<rroor

whose instances expose the methods described above. The dots [...] denote (optional)
Y-protocols instantiations that will be covered in Section 3.2. Without loss of general-
ity, the techniques presented in the following focus on the composition of two protocols.
Composition of multiple protocols (e.g., proving knowledge of a witness for one out of
many statements) can be achieved by recursively applying composition of two protocols.

2.5.1 AND Composition

In this section we show how to construct a X-protocol proving knowledge of multiple
independent witnesses, e.g., knowledge of multiple secret keys, or openings to multiple
commitments. That is, a X-protocol for the following relation:

Rana = {((Yo, Y1), (wo, w1) : (Yo, wo) € Ry A (Y1, w1) € Ry}

For the rest of this section, the witness w for the X-protocol will now be a pair (wg, w;) of
witnesses, and the associated statement Y will be a pair (Yp, Y1) of statements, where wy
is the witness for the statement Y, and w; is the witness for Yj.

Intuitively, the AND composition simply runs the instances of the different protocols
to be composed in parallel, using the same challenge ¢ for both instances. The verifier
will then accept the protocol run if and only if all instances of the partial protocols output
true.

The resulting ¥-protocol is specified by the following algorithms:

® AndComposition.new(ctx,left,right): internally store left and right.
* (T,pstate) + AndComposition.prover_commit(w)

1. (wo,wy) =w

2. (To,pstate) < left.prover_commit(wp)

3. (Ti1,pstate;) < right.prover_commit(w;)

4. Return (T, pstate) := ((Tp,T1), (pstate,, pstate;))

S < AndComposition.prover_response(pstate,c)

1. (pstatey,pstate;) := pstate
2. so « left.prover_response(pstate,¢)
3. s1 < right.prover_response(pstate;,c)

4. Return s := (sg, 1)

AndComposition.verifier(T,c,s)

1. (so,s1) :=s.

2. Return true if both left.verifier(7p,c,so) and right.verifier(77,c¢,s;) return
true. Otherwise, return false.

AndComposition.label() is computed as:
H('and-composition'| left.label(), right.label())

The supported hash functions are described in Section 2.3.2.

A Spec for X-Protocols v 0.2 10

2 GENERIC £-PROTOCOLS V 4 z<rroor

* s+ AndComposition.simulate_response() generates a simulated response as follows:

1. sg < left.simulate_response()
2. s1 < right.simulate_response()

3. Return s := (sg, s1)-
* T < AndComposition.simulate_commitment(c,s) works as follows:

1. (so,s1) :=s.

2. Tp < left.simulate_commitment(c, so)
3. T < right.simulate_commitment(c, s1)
4. Return T = (T, T1).

Warning 3: Witness equality

Note that the AND-composition defined in the following gives no guarantee about
equality of the witnesses: if the same witness is used across different clauses of the
AND-composition, the protocol will not guarantee that they are indeed the same.
How to achieve such claims is discussed in Section 3.3.

2.5.2 OR Composition

In the following we explain how to construct a -protocol proving knowledge of one out
of a set of witnesses, for instance one of a set of secret keys (like ring signatures). That
is, the algorithms specified below constitute a X-protocol for the following relation:

Ror = {((Yo, Y1), (wo,w1) : (Yo, wp) € Rg V (Y1,w1) € Ry}

The statement Y is the pair (Yp,Y;) of the composing statements, and the witness w
is the pair (wp,w;) of the witnesses for the respective relation. One of the witness can be
set to None. In the following protocol specification, let j be such that w; is known to the
prover, whereas without loss of generality w;_; is assumed to be unknown to the prover.

On a high level, the protocol works as follows. Using the simulator, the prover first
simulates a transcript for the unknown witness (keeping the challenge and response of
this transcript temporarily secret), and generates an honest commitment for the known
witness. Having received the challenge, the prover then computes a challenge for the
known witness, depending on the received challenge and the one from the simulated
transcript. Having computed the response, the prover transfers the responses of both
transcripts, as well as the partial challenges to the verifier, who accepts if and only if
both instances of the partial protocols output true and the partial challenges correctly
add up to the random challenge.

The main procedures of the resulting -protocol are specified by the following algo-
rithms:

* OrComposition.new(ctx,left,right): internally store left and right.

* (T,pstate) < OrComposition.prover_commit(w):

A Spec for X-Protocols v 0.2 11

3 Y-PROTOCOLS ON ELLIPTIC CURVES " ZKPROOF

1. Prover = [left, right]

2. (wo,w1) :=w, and let j € {0,1} be the first index for which w; # None

3. (T}, pstate;) « Prover[j].prover_commit (Y}, w;)

4. si_j < Prover[l — j|.simulate_response()

5. Choose a random ¢;_; in C

6. T1_; < Prover[l — j].simulate_commitment(ci—;, s1—;)

7. Return (T, pstate) == ((To, T1), (pstate;, c1—j, 51-5))
® s < OrComposition.prover_response(pstate,c):

1. (pstate;,c1—j,81-;) == pstate

2. ¢cj=cDcij

3. sj + Prover[j].prover_response(pstate;, c;)

4. Return s := (s, $1,0)-
® OrComposition.verifier(T,c,s),

1. (so,s1,c0) ==s.

2. ¢c1=c® .

3. Return true if both left.verifier(7p, co, so) and right.verifier(71,cy, s1) return
true. Otherwise, return false.

* OrComposition.label() is computed as:
H('or-composition' | left.label(), right.label())
The supported hash functions are described in Section 2.3.2.
® s < OrComposition.simulate_response()

(Yo, Y1) = Y.
So < left.simulate_response()
s1 < right.simulate_response()

Choose a random c¢g in C.

U W

Return s = (s, $1, ¢p)-
® T « OrComposition.simulate_commitment(c,s)

(so, 81,¢0) == s.

c1 =cDc.

Tp < left.simulate_commitment(co, So)
T) < right.simulate_commitment(cy, $1)
Return T := (Ty, T1).

oL W

3 X-protocols on elliptic curves

The following section presents concrete instantiations of X-protocols over elliptic curves.

A Spec for X-Protocols v 0.2 12

3 Y-PROTOCOLS ON ELLIPTIC CURVES " ZKPROOF

Remark 3: Protocols for residue classes

Because of their dominance, the presentation in the following focuses on proof
goals over elliptic curves, therefore leveraging additive notation. For prime-order
subgroups of residue classes, all notation needs to be changed to multiplicative,
and references to elliptic curves (e.g., curve) need to be replaced by their respective
counterparts over residue classes.

3.1 Ciphersuite Registry

We advise for the use of prime-order elliptic curves of size either 256 or 512 bits, depend-
ing on the desired security of the upper layers in the protocol?.

Curve Identifier Security Level Sources
P-521 ’-p-521° 256 [NISOO]
P-256 ’-p-256° 128 [NISOO]
secp256kl ’-secp256ki’ 128 [SECOO]
Ristretto ’_ristretto’ 128 [dVGTt20]
BLS12-381 ’-bls12-381° 128 [Bow17]

We denote with G the prime-order group of the elliptic curve, with F, the scalar field, and
with G the generator of G chosen as per the curve parameters. We assume that all above
curve parameters also provide the following group operations: check for equality, iden-
tity, addition, and scalar multiplication. Optionally, implementation might implement
Pippenger’s algorithm [Pip80] for multi-scalar multiplication. In addition, we consider:

¢ an identifier for the curve, chosen from the table above, and denoted curve;

¢ a deterministic sub-procedure a := FromBytes(b), taking as input a bit string b of
length 32 B, and mapping it into an element a < [F);

¢ a deterministic sub-procedure s := Serialize(P), taking as input a group element
P € G and returning a fixed-length sequence of bits. For elliptic curve groups,
Serialize must provide a compressed representation of the affine representation,
such as the z-coordinate of P and one bit determining the sign of y.

* a deterministic sub-procedure P := Deserialize(s), taking a (fixed-length and curve-
dependent) sequence of bits and returning an elliptic curve point. This procedure
may raise an exception or output None if the conversion fails.

2For instance, proving a DH relation with one fixed group element such as a public key, might expose
the protocol to cryptanalytic attacks such as Brown-Gallant [BG04] and Cheon’s attack [Che0O6], and some
implementations might opt for larger curve sizes. We consider these attacks out of scope for this stan-
dardization effort, and believe this analysis should be deferred to the concrete security study of the larger
protocol.

A Spec for X-Protocols v 0.2 13

3 Y-PROTOCOLS ON ELLIPTIC CURVES " ZKPROOF

3.2 Basic Y-Protocols in prime-order groups

We describe an abstract class for proving knowledge of a preimage under an arbitrary
group homomorphism, which is a mapping between two groups respecting the structure
of the groups. In particular, as will be discussed in Section 3.4, many statements related
to discrete logarithms or representations in groups of prime order, can be expressed as
statements over group homomorphisms. For an in-depth discussion of the underlying
theory we refer to Cramer [Cra97].

Definition 1 For two groups G1,Gs, a function ¢ : G; — Gy : z — ¢(x) is a (group) homo-
morphism, if and only if for all a,b € G, it holds that ¢(a + b) = ¢(a) + ¢(b).

Readers not familiar with the notation of group homomorphism may think of ¢ as a linear
function from n elements into m elements.

Example 3: Discrete logarithm equality

Looking at the relation Rgjq from ex 1, the relevant homomorphism is given by:
Pdleq : Fp — G?:w— (wG,wH).

If equality of discrete logarithms within different groups of the same prime order p
is to be proven, the homomorphism to be considered would be:

Sozlleq:]Fp -G xGy:w— (WG,wH),

where G and H would now be generators for G; and Go, respectively. All the tech-
niques discussed in the remainder of this spec equally apply to both cases.

Example 4: Representation

Looking at the relation R,., from ex 2, the relevant homomorphism is given by:

Prep ° IFIQ) = G (wy,w2) = w1G + we H .

We provide a generic template for all ¥-protocols for statements of the following form
over DLOG groups:

Rdlog = {((Yl, ,Ym), (wl,...,wn)) e G™ x F;L : (Yl,...,Ym) = (p(wl,.. . ,wn)}

where ¢ : F) — G™ is a group homomorphism.

Remark 4: Selective disclosure of witnesses

Note that in the following descriptions, all witnesses are assumed to be kept secret,
i.e., none of them is disclosed to the verifier. In case it is required to disclose w;, as
is the case, e.g., in the context of attribute-based credential systems, the relation

A Spec for X-Protocols v 0.2 14

3 Y-PROTOCOLS ON ELLIPTIC CURVES

" ZKPROOF

to be proven can be rewritten as follows:
Rut ,:{ ((Y],...,Y0), (w1, .. wj—1, g1, ..., wy)) € G™ x Fr—t
8 (Y{,,Y#‘) :¢(w1,...,wj,1,wj+1,...
where
Y{,....Y.) :=(V1,...,Yn) — ¢(0,...,0,w;,0,...
Y(wi, .., Wi—1, Wity ..., Wy) = @(wi,...,wj—1,0,Wjt1,...,Wn).

)

,0) and

However, the following defines neither the morphism nor the label associated to the

protocol. These will be defined later in the specific protocols.

® DlogTemplate.new(ctx, Y) internally stores Y and ctx.

* (T,pstate) < DlogTemplate.prover_commit(w) consists of the following steps:

1. Sample random elements 1, ..

T <8 F,

2. T:= (Tl,...

yTon) = (71, ...

7Tn)

-5 Tn)

4. Return (T, pstate)

3. pstate := (ry,..

s < DlogTemplate.prover_response(pstate, c) proceeds as follows:
1. (7"1, oo

2. (wl, ..
3. e := FromBytes(c).

,Tn) = pstate

-awn) =W

4. Fori=1,...,n: s; ==1r; + ew;

5. Return s = (s1,...,).

DlogTemplate.label() return morphism_label().

DlogTemplate.verifier(T,c,s) proceeds as follows:

1. (S1,...,8,) =S
2. (Ty,...,Ty) =T

3. e := FromBytes(c).

4. Fori=1,...,n: check s; € I,
5. Forj=1,...,m: checkT; € G

6. Return true if (71 + €Y1, ..., T +eYy,) = o(s1,- .., sn); false otherwise

® s < DlogTemplate.simulate_response():

1. Sample random elements s1,...,s, «$F,

2. Return (si,...,sy)

* T < DlogTemplate.simulate_commitment(c,s):

A Spec for ¥-Protocols v 0.2

15

3 Y-PROTOCOLS ON ELLIPTIC CURVES " ZKPROOF

(Y17 . 7Ym) =Y
(317 O Sn) =S
e := FromBytes(c)

1
2
3.
4
5

3.3 Advanced: proving linear relations

While the above protocol allows one to efficiently prove knowledge of a pre-image under
a homomorphism, many protocols found in the literature require one to prove relations
among witnesses. Specifically, they require to prove relations like the following:

o w N (Y1,...,Y,) = o(w, ..., wy)
Rhn{((YI’”"Ym)’(1reeesWn)) A (wiy . wy)T = (b, .., bg)T }’

where the matrix A € IF’;X” and vector (by,...,b;) € IF’; specify the system of linear equa-
tions.

In the following, we sketch how such relations can be translated into relations of the
form discussed in Section 3.2. We assume that A is of the following form:

ai; ... Qig 1 0 0 ... 0
a1 ... Qagk 0 1 0
A= 0
- 0 1 0
a1 .. Qg 0 0 1

Note that this is without loss of generality. If the system of linear equations has a dif-
ferent form, the above form can always be achieved using Gaussian elimination [ShoO8,
Sec. 14.4] and re-ordering of the witnesses. Note that we only need to consider the case
where k < n, as otherwise the linear equations would uniquely determine the witnesses,
which is not desirable in our context.

The following relation Ry,’ is now equivalent to that specified by Ry,:

Rii" = {((Y1,.. ., Vi), (w1, .., wng)) + (Y1, .0, Vi) = P(wy, ..., wn)}
where
n—k n—k
w(wlv s 7wn—]€) = QO('UJl,. <oy Wn—ks — Zaliwia ey T Zak‘lwl) and
=1 =1
(Y{,,Y;;) = (Yl,...,Ym)—<p(0,...,0,b1,...,bk).

3.4 Instantiations

Let G be a group over an elliptic curve with prime order p. Denote with G € G a generator
of G.

A Spec for X-Protocols v 0.2 16

3 Y-PROTOCOLS ON ELLIPTIC CURVES " ZKPROOF

3.4.1 Schnorr signatures

Schnorr signatures, also known as Schnorr proofs or DLOG proofs, prove knowledge of
the discrete logarithm w € [F,, of a point Y = wG in base G.

* p:F)—=G:wr— wG
® Schnorr.morphism_label(): return:

H('schnorrsig', curve| Serialize(G), Serialize(Y))

For a description of this proof goal in the general case of residue classes, we also refer
to [ZKP19, 1.4.1].
3.4.2 Discrete logarithm equality

So-called DLEQ proofs prove equality of the discrete logarithm, that is: Y; = wG and
Yo =wH.

* v:F, - G?:w— (wG,wH)
® Dleq.morphism_label(): return

H('dleq', curve| Serialize(G), Serialize(H), Serialize(Y)), Serialize(Y2))

3.4.3 Diffie-Hellman

Let G be a group over an elliptic curve with prime order p. Proving knowledge of the ex-
ponents of a valid Diffie-Hellman triple means proving knowledge of w;, w» € F, such that
Y] = w1 G, Yo = waG, and Y3 = wjwyG. The mapping IFIQ, — G3 : (w1, w2) = (W1G, WG, WwaG)
is not a homomorphism, and consequently the basic protocol presented before cannot be
deployed directly. However, the required multiplicative relation can be proven by observ-
ing that the proof goal is equivalent to Y7 = wG, Y2 = weG, and Y; = wqY], leading the
homomorphism

* p: IF% — G3 : (w1, w2) = (W1G, waG, waY7)
® Dh.morphism_label() return:

H('diffie-hellman', curve| Serialize(G), Serialize(Y]), Serialize(Y3))

As shown in this example, and in contrast to linear relations, multiplicative relations
among witnesses typically require a reformulation of the proof goal.

A Spec for X-Protocols v 0.2 17

3 Y-PROTOCOLS ON ELLIPTIC CURVES " ZKPROOF

3.4.4 Representation

Let G be a group over an elliptic curve of prime order p, and let G, ..., G,, be generators
of G. Proving knowledge of a valid opening of a Pedersen commitment means proving
knowledge of w;, ws, ..., w, € F, such that Y = w1G1 + wGa + - - - + wp, Gy

® p: F;n - G: (wl,wg,...,wm) — lesz
® Rep.morphism_label() returns

H('representation', curve| Serialize(G;), ---, Serialize(G,,), Serialize(Y))

Example 5: Range proofs via bit decomposition

Let G be a cyclic group of prime order p, and let G and H be generators of G, and
let ¢ be a non-negative integer satisfying ¢ < log, p. Consider the following relation:

Rrange = {(Y, (w1, ws))) : Y =wiG+weH A wi €0, 2f)}.

Multiple techniques for proving that a secret witness lies within a certain range, cf.
Morais et al. [MKvWK19] for a survey. We will use the so-called bit decomposition
approach.

To do so, the prover computes w;; € {0,1} for i = 0,...,¢ — 1 such that w; =
Zf;é 2iw17,-, and computes commitments to those individual bits, i.e., Y; = w ;G +
wa ;H for wy; < F,. Furthermore, it sets w* = wy — Y.\ 2wy ;.

Assuming that the discrete logarithm problem is hard in G, the above relation is
now equivalent to the following relation:

Rrange’ = { ((Y, (Yi)f;é)a (wr, wy, (wz,i)f;(l)),w*)> Y =wiG+wH A (1)
-1
Y= 2V, =w'H A 2)
1=0
-1
/\(Yz‘:wzzﬂ % Yi—G—wz,iH)}. (3
i=0

It can now be seen that (1) ensures knowledge of the witnesses w; hidden within
Y. Furthermore, (2) guarantees that the values hidden within Y; correctly add up
to wq, i.e., that wy — Zf;é 2iw17i = 0. Finally, the two clauses in (3) ensure that each
Y; is a commitment to either 0 or 1, thus implying the bound on w;.

While (1) can be proven using the protocol from Section 3.4.4, (2) and (3) can be
proven using those from Section 3.4.1. The different clauses can finally be com-

posed using nested protocol compositions from Section 2.5.

A Spec for ¥-Protocols v 0.2 18

4 ENCODING THE STATEMENT " ZKPROOF

3.5 Batch verification

The batchable form can take advantage of the following fact. Given ¢ verification equations
of the form:
T +¢Y; = Z 5;Gij
J

fori=1,...,/, the verifier can sample a random vector of coefficients a € Fﬁ and instead

test:
¢ ¢ ¢
<Z aiTi> + (Z a; - cﬂﬁ) = Z a; - Z 5iGi g
i=1 i=1 i=1 j

If the matrix G;; of generators has identical rows, by linearity the right-hand side can
be computed as a single scalar product. If the statements Y;’s have identical rows, by
linearity the second term in the equation can be computed as a single scalar product.

In any case, the test can be efficiently implemented as a single multiscalar multipli-
cation, minimizing the number of group operations needed:

¢ ¢ ¢
(Z aﬂ}) + <Z(ai : Cz)ﬁ) + ZZ(—% +85)Gij | =0.
i=1 i=1 i=1 j

The random vector a can be deterministically generated by fixing a; := 1 and setting
(ag,...,a7) = PRG(H(c, s)) [WNR18].

4 Encoding the statement

Statements in X-protocols take the form of a labeled binary tree: Statement is either:
¢ a label AND, or OR, and two children left and right of type Statement

* a StatementLeaf instance. Objects of this type depend on the specific algebraic set-
ting used, and will be treated in Section 3.2.

Statements are serialized depth-first. There are many different options for serialization
that could be considered:

* Concise Binary Object Representation (CBOR) RFC7049

* The zk proof Reference document provides a serialization document for rlcs [ZKP19,
3.4.2], but there is nothing in it.

Michele’s note: Question for the community: what kind of serialization format
should we pick? It seems that no clear choice has been taken already for rlcs and
CBOR seems to be the most reasonable choice?

A Spec for X-Protocols v 0.2 19

https://datatracker.ietf.org/doc/html/rfc7049

REFERENCES V 4 z<rroor

5 Additional proof types

Other protocols are not included here and are not part of the scope of the current version
of this spec.

* mpc-in-the-head protocol such as ZKBoo [GMO16]
* one-out-of-many proofs such as [GK15]

*]Jwe-based sigma protocol [ACK21]

¢ syndrome decoding and LPN [Ste94, JKPT12]

References

[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed X-protocol
theory for lattices. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 549-579, Virtual Event, August 2021.
Springer, Heidelberg.

[ANT120] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. LadderLeak: Breaking ECDSA with less than one bit of
nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 225-242. ACM Press, November 2020.

[ANWW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Chris-
tian Winnerlein. BLAKE2: Simpler, smaller, fast as MD5. In Michael J.
Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-
Naini, editors, ACNS 13, volume 7954 of LNCS, pages 119-135. Springer,
Heidelberg, June 2013.

[BBPV12] Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren.
Practical realisation and elimination of an ECC-related software bug attack.
In Orr Dunkelman, editor, CT-RSA 2012, volume 7178 of LNCS, pages 171-
186. Springer, Heidelberg, February / March 2012.

[BCF19] Daniel Benarroch, Matteo Campanelli, and Dario Fiore. — Community
Standards Proposal for Commit-and-Prove Zero-Knowledge Proof Systems.
ZKProof Community Standard Proposal, available at https://github.com/
zkpstandard/zkreference/tree/master/standards-proposals, 2019. accessed
on February 22, 2021.

[BDPA13] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche.
Keccak. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 313-314. Springer, Heidelberg,
May 2013.

[BEHF21] Jan Bobolz, Fabian Eidens, Raphael Heitjohann, and Jeremy Fell. Crypti-
meleon: A library for fast prototyping of privacy-preserving cryptographic
schemes. Cryptology ePrint Archive, Report 2021/961, 2021. https:
//eprint.iacr.org/2021/961.

A Spec for X-Protocols v 0.2 20

https://github.com/zkpstandard/zkreference/tree/master/standards-proposals
https://github.com/zkpstandard/zkreference/tree/master/standards-proposals
https://eprint.iacr.org/2021/961
https://eprint.iacr.org/2021/961

REFERENCES V 4 z<rroor

[BG93]

[BGO4]

[BleOO]

[BMMOO]

[Bow17]

[BPW12]

[CCsO08]

[CheO6]

[CMZ14]

[Cra97]

[DamO04]

[dVGT'20]

[FFS87]

Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 390-420.
Springer, Heidelberg, August 1993.

Daniel R. L. Brown and Robert P. Gallant. The static Diffie-Hellman problem.
Cryptology ePrint Archive, Report 2004/306, 2004. https://eprint.iacr.
org/2004/306.

Daniel Bleichenbacher. On the generation of one-time keys in dl signature
schemes. In Presentation at IEEE P1363 working group meeting, page 81,
2000.

Ingrid Biehl, Bernd Meyer, and Volker Miiller. Differential fault attacks on
elliptic curve cryptosystems. In Mihir Bellare, editor, CRYPTO 2000, volume
1880 of LNCS, pages 131-146. Springer, Heidelberg, August 2000.

Sean Bowe. Bls12-381: New zk-snark elliptic curve construction, 2017.
Available at: https://electriccoin.co/blog/new-snark-curve/.

David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 626-643. Springer, Heidelberg, December 2012.

Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set
membership and range proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008,
volume 5350 of LNCS, pages 234-252. Springer, Heidelberg, December
2008.

Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
1-11. Springer, Heidelberg, May / June 2006.

Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and
keyed-verification anonymous credentials. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 2014, pages 1205-1216. ACM Press, November
2014.

Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Proto-
cols. PhD thesis, CWI Amsterdam, The Netherlands, 1997.

Ivan Damgard. On X-Protocols. Lecture on Crptologic Protocol Theory; Fac-
ulty of Science, University of Aarhus, 2004.

Henry de Valence, Jack Grigg, George Tankersley, Filippo Valsorda, isis
lovecruft, and Mike Hamburg. The ristretto255 and decaf448 Groups.
Internet-Draft draft-irtf-cfrg-ristretto255-decaf448-00, Internet Engineering
Task Force, October 2020. Work in Progress.

Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In
Alfred Aho, editor, 19th ACM STOC, pages 210-217. ACM Press, May 1987.

A Spec for X-Protocols v 0.2 21

https://eprint.iacr.org/2004/306
https://eprint.iacr.org/2004/306
https://electriccoin.co/blog/new-snark-curve/

REFERENCES V 4 z<rroor

[FS87]

[GK15]

[GKK™19]

[GMO16]

[GMRS85]

[GMRS89]

[HGSO01]

[HR11]

[JKPT12]

[KG20]

[LLO7]

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186-194. Springer, Heidelberg, Au-
gust 1987.

Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak
a secret and spend a coin. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 253-280. Springer,
Heidelberg, April 2015.

Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian
Rechberger, and Markus Schofnegger. Starkad and Poseidon: New hash
functions for zero knowledge proof systems. Cryptology ePrint Archive, Re-
port 2019/458, 2019. https://eprint.iacr.org/2019/458.

Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-
knowledge for Boolean circuits. In Thorsten Holz and Stefan Savage, edi-
tors, USENIX Security 2016, pages 1069-1083. USENIX Association, August
2016.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM STOC,
pages 291-304. ACM Press, May 1985.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM Journal on Computing, 18(1):186—
208, 1989.

Nick A Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Designs, Codes and Cryptography, 23(3):283-290, 2001.

Feng Hao and Peter Y. A. Ryan. Password authenticated key exchange by
juggling. In Bruce Christianson, James A. Malcolm, Vashek Matyas, and
Michael Roe, editors, Security Protocols XVI, pages 159-171, Berlin, Heidel-
berg, 2011. Springer Berlin Heidelberg.

Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commit-
ments and efficient zero-knowledge proofs from learning parity with noise.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 663-680. Springer, Heidelberg, December 2012.

Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized schnorr
threshold signatures. Cryptology ePrint Archive, Report 2020/852, 2020.
https://eprint.iacr.org/2020/852.

Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-
based schemes using a prime order subgroup. In Burton S. Kaliski Jr.,
editor, CRYPTO’97, volume 1294 of LNCS, pages 249-263. Springer, Heidel-
berg, August 1997.

A Spec for X-Protocols v 0.2 22

https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2020/852

REFERENCES V 4 z<rroor

[MKvWK19] Eduardo Morais, Tommy Koens, Cees van Wijk, and Aleksei Koren. A sur-

[MP15]

[NISOO0]

[NRSW20]

[Pip80]

[PS97]

[PS16]

[Sch90]

[Sch9l]

[SECO00]

[Sho08]

[Ste94]

[VWO6]

vey on zero knowledge range proofs and applications. SN Applied Sciences,
1(8):946, 2019.

Gregory Maxwell and Andrew Poelstra. Borromean Signatures, 2015. Avail-
able at https://raw.githubusercontent.com/Blockstream/borromean_paper/
master/borromean_draft_0.01_34241bb.pdfx.

NIST. Digital signature standard. FIPS 186-2, 2000. Available
at: https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/
2000-01-27/documents/fips186-2.pdf.

Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN:
Schnorr multi-signatures with verifiably deterministic nonces. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020,
pages 1717-1731. ACM Press, November 2020.

Nicholas Pippenger. On the evaluation of powers and monomials. SIAM
Journal on Computing, 9(2):230-250, 1980.

David Pointcheval and Jacques Stern. New blind signatures equivalent to
factorization (extended abstract). In Richard Graveman, Philippe A. Janson,
Clifford Neuman, and Li Gong, editors, ACM CCS 97, pages 92-99. ACM
Press, April 1997.

David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111-126.
Springer, Heidelberg, February / March 2016.

Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239-252.
Springer, Heidelberg, August 1990.

Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161-174, January 1991.

Certicom research, standards for efficient cryptography group (SECG) —
sec 1: Elliptic curve cryptography. http://www.secg.org/secg_docs.htm,
September 20, 2000. Version 1.0.

Victor Shoup. A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, 2008. 2nd edition.

Jacques Stern. A new identification scheme based on syndrome decoding. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 13-21.
Springer, Heidelberg, August 1994.

Paul C. van Oorschot and Michael J. Wiener. On Diffie-Hellman key agree-
ment with short exponents. In Ueli M. Maurer, editor, EUROCRYPT 96, vol-
ume 1070 of LNCS, pages 332-343. Springer, Heidelberg, May 1996.

A Spec for X-Protocols v 0.2 23

https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdfx
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdfx
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
http://www.secg.org/secg_docs.htm

REFERENCES V 4 z<rroor

[WNR18] Pieter Wuille, Jonasonas Nick, and Tim Ruffing. Bip 0340, 2018. Available
at: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/
016203 .html.

[ZKP19] ZKProof. ZKProof Community Reference v0.2. Technical report, 2019. ac-
cessed on February 8, 2021.

A Spec for X-Protocols v 0.2 24

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016203.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016203.html

	Introduction
	Notation
	Terminology
	Guarantees
	Scope of this document

	Generic -Protocols
	Overview
	An abstract class for generic -protocols
	The Fiat-Shamir Transform
	Syntax
	Hash Registry
	Computing the challenge and seeding the commitment
	Non-interactive proofs
	Batchable Proofs
	Short Proofs

	Input validation
	Composition of -Protocols
	AND Composition
	OR Composition

	-protocols on elliptic curves
	Ciphersuite Registry
	Basic -Protocols in prime-order groups
	Advanced: proving linear relations
	Instantiations
	Schnorr signatures
	Discrete logarithm equality
	Diffie-Hellman
	Representation

	Batch verification

	Encoding the statement
	Additional proof types

